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A P P E N D I X  A

QUANTITATIVE REVIEW

Students in management and investment courses typically come from a

variety of backgrounds. Some, who have had strong quantitative training,

may feel perfectly comfortable with formal mathematical presentation

of material. Others, who have had less technical training, may easily be

overwhelmed by mathematical formalism. Most students, however, will

benefit from some coaching to make the study of investment easier and

more efficient. If you had a good introductory quantitative methods course,

and like the text that was used, you may want to refer to it whenever you feel

in need of a refresher. If you feel

uncomfortable with standard

quantitative texts, this reference

is for you. Our aim is to present

the essential quantitative concepts

and methods in a self-contained,

nontechnical, and intuitive way.

Our approach is structured in line

with requirements for the CFA

program. The material included is

relevant to investment management

by the ICFA, the Institute of

Chartered Financial Analysts.

We hope you find this appendix

helpful. Use it to make your venture

into investments more enjoyable.

1006
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A.1 PROBABILITY DISTRIBUTIONS
Statisticians talk about “experiments,” or “trials,” and refer to possible outcomes
as “events.” In a roll of a die, for example, the “elementary events” are the numbers
1 through 6. Turning up one side represents the most disaggregate mutually exclusive out-
come. Other events are compound, that is, they consist of more than one elementary event,
such as the result “odd number” or “less than 4.” In this case “odd” and “less than 4” are
not mutually exclusive. Compound events can be mutually exclusive outcomes, however,
such as “less than 4” and “equal to or greater than 4.”

In decision making, “experiments” are circumstances in which you contemplate a deci-
sion that will affect the set of possible events (outcomes) and their likelihood (probabili-
ties). Decision theory calls for you to identify optimal decisions under various sets of
circumstances (experiments), which you may do by determining losses from departures
from optimal decisions.

When the outcomes of a decision (experiment) can be quantified, that is, when a nu-
merical value can be assigned to each elementary event, the decision outcome is called a
random variable. In the context of investment decision making, the random variable (the
payoff to the investment decision) is denominated either in dollars or as a percentage rate
of return.

The set or list of all possible values of a random variable, with their associated prob-
abilities, is called the probability distribution of the random variable. Values that are im-
possible for the random variable to take on are sometimes listed with probabilities of zero.
All possible elementary events are assigned values and probabilities, and thus the prob-
abilities have to sum to 1.0.

Sometimes the values of a random variable are uncountable, meaning that you cannot
make a list of all possible values. For example, suppose you roll a ball on a line and report
the distance it rolls before it comes to rest. Any distance is possible, and the precision of the
report will depend on the need of the roller and/or the quality of the measuring device.
Another uncountable random variable is one that describes the weight of a newborn baby.
Any positive weight (with some upper bound) is possible.

We call uncountable probability distributions continuous, for the obvious reason that, at
least within a range, the possible outcomes (those with positive probabilities) lie anywhere
on a continuum of values. Because there is an infinite number of possible values for the
random variable in any continuous distribution, such a probability distribution has to be de-
scribed by a formula that relates the values of the random variable and their associated
probabilities, instead of by a simple list of outcomes and probabilities. We discuss contin-
uous distributions later in this section.

Even countable probability distributions can be complicated. For example, on the New
York Stock Exchange stock prices are quoted in eighths. This means the price of a stock at
some future date is a countable random variable. Probability distributions of countable ran-
dom variables are called discrete distributions. Although a stock price cannot dip below
zero, it has no upper bound. Therefore a stock price is a random variable that can take on
infinitely many values, even though they are countable, and its discrete probability distrib-
ution will have to be given by a formula just like a continuous distribution.

There are random variables that are both discrete and finite. When the probability distri-
bution of the relevant random variable is countable and finite, decision making is tractable
and relatively easy to analyze. One example is the decision to call a coin toss “heads” or
“tails,” with a payoff of zero for guessing wrong and 1 for guessing right. The random vari-
able of the decision to guess “heads” has a discrete, finite probability distribution. It can be
written as
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Event Value Probability

Heads 1 .5

Tails 0 .5

This type of analysis usually is referred to as scenario analysis. Because scenario analy-
sis is relatively simple, it is used sometimes even when the actual random variable is in-
finite and uncountable. You can do this by specifying values and probabilities for a set of
compound, yet exhaustive and mutually exclusive, events. Because it is simple and has im-
portant uses, we handle this case first.

Here is a problem from the 1988 CFA examination.

Mr. Arnold, an Investment Committee member, has confidence in the forecasting ability of the
analysts in the firm’s research department. However, he is concerned that analysts may not ap-
preciate risk as an important investment consideration. This is especially true in an increasingly
volatile investment environment. In addition, he is conservative and risk averse. He asks for your
risk analysis for Anheuser-Busch stock.

1. Using Table A.1, calculate the following measures of dispersion of returns for Anheuser-
Busch stock under each of the three outcomes displayed. Show calculations.

a. Range.
b. Variance: � Pr(i)[ri � E(r)]2.
c. Standard deviation.
d. Coefficient of variation: CV � �/E(r).

2. Discuss the usefulness of each of the four measures listed in quantifying risk.

The examination questions require very specific answers. We use the questions as
framework for exposition of scenario analysis.

Table A.1 specifies a three-scenario decision problem. The random variable is the rate
of return on investing in Anheuser-Busch stock. However, the third column, which speci-
fies the value of the random variable, does not say simply “Return”—it says “Expected Re-
turn.” This tells us that the scenario description is a compound event consisting of many
elementary events, as is almost always the case. We streamline or simplify reality in order
to gain tractability.

Analysts who prepare input lists must decide on the number of scenarios with which to
describe the entire probability distribution, as well as the rates of return to allocate to each
one. This process calls for determining the probability of occurrence of each scenario, and
the expected rate of return within (conditional on) each scenario, which governs the out-
come of each scenario. Once you become familiar with scenario analysis, you will be able
to build a simple scenario description from any probability distribution.

The expected value of a random variable is the answer to the question, What
would be the average value of the variable if the “experiment” (the circum-

stances and the decision) were repeated infinitely? In the case of an investment decision,
your answer is meant to describe the reward from making the decision.

Expected Returns

1008 APPENDIX A Quantitative Review

Table A.1 Anheuser-Busch Companies, Inc., Dispersion of Potential Returns

Outcome Probability Expected Return*

Number 1 .20 20%

Number 2 .50 30

Number 3 .30 50

*Assume for the moment that the expected return in each scenario will be realized with certainty. This is the way returns were expressed
in the original question.
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Note that the question is hypothetical and abstract. It is hypothetical because, practi-
cally, the exact circumstances of a decision (the “experiment”) often cannot be repeated
even once, much less infinitely. It is abstract because, even if the experiment were to be re-
peated many times (short of infinitely), the average rate of return may not be one of the
possible outcomes. To demonstrate, suppose that the probability distribution of the rate of
return on a proposed investment project is �20% or �20%, with equal probabilities of .5.
Intuition indicates that repeating this investment decision will get us ever closer to an av-
erage rate of return of zero. But a one-time investment cannot produce a rate of return of
zero. Is the “expected” return still a useful concept when the proposed investment repre-
sents a one-time decision?

One argument for using expected return to measure the reward from making investment
decisions is that, although a specific investment decision may be made only once, the de-
cision maker will be making many (although different) investment decisions over time.
Over time, then, the average rate of return will come close to the average of the expected
values of all the individual decisions. Another reason for using the expected value is that
admittedly we lack a better measure.1

The probabilities of the scenarios in Table A.1 predict the relative frequencies of the
outcomes. If the current investment in Anheuser-Busch could be replicated many times, a
20% return would occur 20% of the time, a 30% return would occur 50% of the time, and
50% return would occur the remaining 30% of the time. This notion of probabilities and the
definition of the expected return tells us how to calculate the expected return.2

E(r) � .20 � .20 � .50 � .30 � .30 � .50 � .34 (or 34%)

Labeling each scenario i � 1, 2, 3, and using the summation sign, �, we can write the
formula for the expected return:

E(r) � Pr(1)r1 � Pr(2)r2 � Pr(3)r3 (A.1)

� Pr(i)ri

The definition of the expectation in equation A.1 reveals two important properties
of random variables. First, if you add a constant to a random variable, its expectation is also
increased by the same constant. If, for example, the return in each scenario in Table A.1
were increased by 5%, the expectation would increase to 39%. Try this, using equation
A.1. If a random variable is multiplied by a constant, its expectation will change by that
same proportion. If you multiply the return in each scenario by 1.5, E(r) would change to
1.5 � .34 � .51 (or 51%).

Second, the deviation of a random variable from its expected value is itself a random
variable. Take any rate of return r1 in Table A.1 and define its deviation from the expected
value by

di � ri � E(r)

What is the expected value of d ? E(d ) is the expected deviation from the expected value,
and by equation A.1 it is necessarily zero because

E(d ) � � Pr(i)di � � Pr(i)[ri � E(r)]

� � Pr(i)ri � E(r) � Pr(i)

� E(r) � E(r) � 0

�
3

i�1

1 Another case where we use a less-than-ideal measure is the case of yield to maturity on a bond. The YTM measures the rate of
return from investing in a bond if it is held to maturity and if the coupons can be reinvested at the same yield to maturity over the
life of the bond.
2 We will consistently perform calculations in decimal fractions to avoid confusion.
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The Range. Assume for a moment that the expected return for each sce-
nario in Table A.1 will be realized with certainty in the event that scenario

occurs. Then the set of possible return outcomes is unambiguously 20%, 30%, and 50%.
The range is the difference between the maximum and the minimum values of the random
variable, 50% � 20% � 30% in this case. Range is clearly a crude measure of dispersion.
Here it is particularly inappropriate because the scenario returns themselves are given as
expected values, and therefore the true range is unknown. There is a variant of the range,
the interquartile range, that we explain in the discussion of descriptive statistics.

The Variance. One interpretation of variance is that it measures the “expected sur-
prises.” Although that may sound like a contradiction in terms, it really is not. First, think
of a surprise as a deviation from expectation. The surprise is not in the fact that expectation
has not been realized, but rather in the direction and magnitude of the deviation.

The example in Table A.1 leads us to expect a rate of return of 34% from investing in
Anheuser-Busch stock. A second look at the scenario returns, however, tells us that we
should stand ready to be surprised because the probability of earning exactly 34% is zero.
Being sure that our expectation will not be realized does not mean that we can be sure what
the realization is going to be. The element of surprise lies in the direction and magnitude of
the deviation of the actual return from expectation, and that is the relevant random variable
for the measurement of uncertainty. Its probability distribution adds to our understanding
of the nature of the uncertainty that we are facing.

We measure the reward by the expected return. Intuition suggests that we measure un-
certainty by the expected deviation of the rate of return from expectation. We showed in the
previous section, however, that the expected deviation from expectation must be zero. Posi-
tive deviations, when weighted by probabilities, are exactly offset by negative deviations.
To get around this problem, we replace the random variable “deviation from expectations”
(denoted earlier by d ) with its square, which must be positive even if d itself is negative.

We define the variance, our measure of surprise or dispersion, by the expected squared
deviation of the rate of return from its expectation. With the Greek letter sigma square de-
noting variance, the formal definition is

�2(r) � E(d 2) � E[ri � E(r)]2 � � Pr(i)[ri � E(r)]2 (A.2)

Squaring each deviation eliminates the sign, which eliminates the offsetting effects of pos-
itive and negative deviations.

In the case of Anheuser-Busch, the variance of the rate of return on the stock is

�2(r) � .2(.20 � .34)2 � .5(.30 � .34)2 � .3(.50 � .34)2 � .0124

Remember that if you add a constant to a random variable, the variance does not
change at all. This is because the expectation also changes by the same constant, and hence
deviations from expectation remain unchanged. You can test this by using the data from
Table A.1.

Multiplying the random variable by a constant, however, will change the variance. Sup-
pose that each return is multiplied by the factor k. The new random variable, kr, has ex-
pectation of E(kr) � kE(r). Therefore, the deviation of kr from its expectation is

d(kr) � kr � E(kr) � kr � kE(r) � k[r � E(r)] � kd(r)

If each deviation is multiplied by k, the squared deviations are multiplied by the square of k:

�2(kr) � k2�2(r)

To summarize, adding a constant to a random variable does not affect the variance. Mul-
tiplying a random variable by a constant, though, will cause the variance to be multiplied
by the square of that constant.

Measures of Dispersion

1010 APPENDIX A Quantitative Review
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The Standard Deviation. A closer look at the variance will reveal that its dimension
is different from that of the expected return. Recall that we squared deviations from the
expected return in order to make all values positive. This alters the dimension (units of
measure) of the variance to “square percents.” To transform the variance into terms of per-
centage return, we simply take the square root of the variance. This measure is the standard
deviation. In the case of Anheuser-Busch’s stock return, the standard deviation is

� � (�2)1/2 � � .1114 (or 11.14%) (A.3)

Note that you always need to calculate the variance first before you can get the standard
deviation. The standard deviation conveys the same information as the variance but in a
different form.

We know already that adding a constant to r will not affect its variance, and it will not
affect the standard deviation either. We also know that multiplying a random variable by a
constant multiplies the variance by the square of that constant. From the definition of the
standard deviation in equation A.3, it should be clear that multiplying a random variable by
a constant will multiply the standard deviation by the (absolute value of this) constant. The
absolute value is needed because the sign of the constant is lost through squaring the devia-
tions in the computation of the variance. Formally,

�(kr) � Abs(k)�(r)

Try a transformation of your choice using the data in Table A.1.

The Coefficient of Variation. To evaluate the magnitude of dispersion of a random
variable, it is useful to compare it to the expected value. The ratio of the standard deviation
to the expectation is called the coefficient of variation. In the case of returns on Anheuser-
Busch stock, it is

CV � � � .3285 (A.4)

The standard deviation of the Anheuser-Busch return is about one-third of the expected
return (reward). Whether this value for the coefficient of variation represents a big risk
depends on what can be obtained with alternative investments.

The coefficient of variation is far from an ideal measure of dispersion. Suppose that a
plausible expected value for a random variable is zero. In this case, regardless of the mag-
nitude of the standard deviation, the coefficient of variation will be infinite. Clearly, this
measure is not applicable in all cases. Generally, the analyst must choose a measure of dis-
persion that fits the particular decision at hand. In finance, the standard deviation is the
measure of choice in most cases where overall risk is concerned. (For individual assets,
the measure �, explained in the text, is the measure used.)

So far, we have described the measures of dispersion as indicating the size
of the average surprise, loosely speaking. The standard deviation is not ex-

actly equal to the average surprise though, because squaring deviations and then taking the
square root of the average square deviation results in greater weight (emphasis) placed on
larger deviations. Other than that, it is simply a measure that tells us how big a deviation
from expectation can be expected.

Most decision makers agree that the expected value and standard deviation of a random
variable are the most important statistics. However, once we calculate them another ques-
tion about risk (the nature of the random variable describing deviations from expectations)
is pertinent: Are the larger deviations (surprises) more likely to be positive? Risk-averse de-
cision makers worry about bad surprises, and the standard deviation does not distinguish

Skewness

.1114

.3400
�

E(r)

�.0124
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good from bad ones. Most risk avoiders are believed to prefer random variables with likely
small negative surprises and less likely large positive surprises, to the reverse, likely small
good surprises and less likely large bad surprises. More than anything, risk is really de-
fined by the possibility of disaster (large bad surprises).

One measure that distinguishes between the likelihood of large good-vs.-bad surprises
is the “third moment.” It builds on the behavior of deviations from the expectation, the ran-
dom variable we have denoted by d. Denoting the third moment by M3, we define it:

M3 � E(d 3) � E[ri � E(r)]3 � � Pr(i)[ri � E(r)]3 (A.5)

Cubing each value of d (taking it to the third power) magnifies larger deviations more
than smaller ones. Raising values to an odd power causes them to retain their sign. Recall
that the sum of all deviations multiplied by their probabilities is zero because positive de-
viations weighted by their probabilities exactly offset the negative. When cubed deviations
are multiplied by their probabilities and then added up, however, large deviations will dom-
inate. The sign will tell us in this case whether large positive deviations dominate (positive
M3) or whether large negative deviations dominate (negative M3).

Incidentally, it is obvious why this measure of skewness is call the third moment; it
refers to cubing. Similarly, the variance is often referred to as the second moment because
it requires squaring.

Returning to the investment decision described in Table A.1, with the expected value of
34%, the third moment is

M3 � .2(.20 � .34)3 � .5(.30 � .34)3 � .3(.50 � .34)3 � .000648

The sign of the third moment tells us that larger positive surprises dominate in this case.
You might have guessed this by looking at the deviations from expectation and their prob-
abilities; that is, the most likely event is a return of 30%, which makes for a small negative
surprise. The other negative surprise (20% � 34% � �14%) is smaller in magnitude than
the positive surprise (50% � 34% � 16%) and is also less likely (probability .20) relative
to the positive surprise, 30% (probability .30). The difference appears small, however, and
we do not know whether the third moment may be an important issue for the decision to
invest in Anheuser-Busch.

It is difficult to judge the importance of the third moment, here .000648, without a
benchmark. Following the same reasoning we applied to the standard deviation, we can
take the third root of M3 (which we denote m3) and compare it to the standard deviation.
This yields m3 � .0865 � 8.65%, which is not trivial compared with the standard deviation
(11.14%).

Suppose that the current price of Anheuser-Busch stock is $30. A call option
on the stock is selling for 60 cents, and a put is selling for $4. Both have an
exercise price of $42 and maturity date to match the scenarios in Table A.1.

The call option allows you to buy the stock at the exercise price. You will
choose to do so if the call ends up “in the money,” that is, the stock price is above the ex-
ercise price. The profit in this case is the difference between the stock price and the exer-
cise price, less cost of the call. Even if you exercise the call, your profit may still be
negative if the cash flow from the exercise of the call does not cover the initial cost of the
call. If the call ends up “out of the money,” that is, the stock price is below the exercise
price, you will let the call expire worthless and suffer a loss equal to the cost of the call.

The put option allows you to sell the stock at the exercise price. You will choose to do
so if the put ends up “in the money,” that is, the stock price is below the exercise price.

Another Example:
Options on

Anheuser-Busch Stock

1012 APPENDIX A Quantitative Review
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Your profit is then the difference between the exercise price and the stock price, less the
initial cost of the put. Here again, if the cash flow is not sufficient to cover the cost of the
put, the investment will show a loss. If the put ends up “out of the money,” you again let it
expire worthless, taking a loss equal to the initial cost of the put.

The scenario analysis of these alternative investments is described in Table A.2.
The expected rates of return on the call and put are

E(rcall) � .2(�1) � .5(�1) � .3(4) � .5 (or 50%)

E(rput) � .2(.5) � .5(�.25) � .3(�1) � �.325 (or �32.5%)

The negative expected return on the put may be justified by the fact that it is a hedge as-
set, in this case an insurance policy against losses from holding Anheuser-Busch stock. The
variance and standard deviation of the two investments are

�2
call � .2(�1 � .5)2 � .5(�1 � .5)2 � .3(4 � .5)2 � 5.25

�2
put � .2[.5 � (�.325)]2 � .5[�.25 � (�.325)]2 � .3[�1 � (�.325)]2 � .2756

�call � � 2.2913 (or 229.13%)

�put � � .525 (or 52.5%)

These are very large standard deviations. Comparing the standard deviation of the call’s
return to its expected value, we get the coefficient of variation:

CVcall � � 4.5826

Refer back to the coefficient of variation for the stock itself, .3275, and it is clear that
these instruments have high standard deviations. This is quite common for stock options.
The negative expected return of the put illustrates again the problem in interpreting the
magnitude of the “surprise” indicated by the coefficient of variation.

Moving to the third moments of the two probability distributions:

M3(call) � .2(�1 � .5)3 � .5(�1 � .5)3 � .3(4 � .5)3 � 10.5

M3(put) � .2[.5 � (�.325)]3 � .5[�.25 � (�.325)]3 � .3[�1 � (�.325)]3

� .02025

2.2913
.5

�.2756
�5.25

Table A.2 Scenario Analysis for Investment in
Options on Anheuser-Busch Stock

Scenario 1 Scenario 2 Scenario 3

Probability .20 .50 .30

Event

1. Return on stock 20% 30% 50%

Stock price (initial price � $30) $36.00 $39.00 $45.00

2. Cash flow from call (exercise price � $42) 0 0 $3.00

Call profit (initial price � $.60) �$.60 �$.60 $2.40

Call rate of return �100% �100% 400%

3. Cash flow from put (exercise price � $42) $6.00 $3.00 0

Put profit (initial price � $4) $2.00 �$1.00 �$4.00

Put rate of return 50% �25% �100%
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Both instruments are positively skewed, which is typical of options and one part of their
attractiveness. In this particular circumstance the call is more skewed than the put. To es-
tablish this fact, note the third root of the third moment:

m3(call) � M3(call)1/3 � 2.1898 (or 218.98%)

m3(put) � .021/3 � .2725 (or 27.25%)

Compare these figures to the standard deviations, 229.13% for the call and 52.5% for
the put, and you can see that a large part of the standard deviation of the option is driven
by the possibility of large good surprises instead of by the more likely, yet smaller, bad
surprises.3

So far we have described discrete probability distributions using scenario analysis. We
shall come back to decision making in a scenario analysis framework in Section A.3 on
multivariate statistics.

When a compact scenario analysis is possible and acceptable, decisions may
be quite simple. Often, however, so many relevant scenarios must be speci-
fied that scenario analysis is impossible for practical reasons. Even in the
case of Anheuser-Busch, as we were careful to specify, the individual sce-
narios considered actually represented compound events.

When many possible values of rate of return have to be considered, we must use a for-
mula that describes the probability distribution (relates values to probabilities). As we
noted earlier, there are two types of probability distributions: discrete and continuous. Sce-
nario analysis involves a discrete distribution. However, the two most useful distributions
in investments, the normal and lognormal, are continuous. At the same time they are often
used to approximate variables with distributions that are known to be discrete, such as
stock prices. The probability distribution of future prices and returns is discrete—prices are
quoted in eighths. Yet the industry norm is to approximate these distributions by the nor-
mal or lognormal distribution.

Standard Normal Distribution. The normal distribution, also known as Gaussian
(after the mathematician Gauss) or bell-shaped, describes random variables with the fol-
lowing properties and is shown in Figure A.1:

• The expected value is the mode (the most frequent elementary event) and also
the median (the middle value in the sense that half the elementary events are greater
and half smaller). Note that the expected value, unlike the median or mode, requires
weighting by probabilities to produce the concept of central value.

• The normal probability distribution is symmetric around the expected value. In
other words, the likelihood of equal absolute-positive and negative deviations from
expectation is equal. Larger deviations from the expected value are less likely than
are smaller deviations. In fact, the essence of the normal distribution is that the
probability of deviations decreases exponentially with the magnitude of the
deviation (positive and negative alike).

• A normal distribution is identified completely by two parameters, the expected
value and the standard deviation. The property of the normal distribution that

Continuous
Distributions: Normal

and Lognormal
Distributions

1014 APPENDIX A Quantitative Review

3 Note that the expected return of the put is �32.5%; hence the worst surprise is �67.5%, and the best is 82.5%. The middle
scenario is also a positive deviation of 7.5% (with a high probability of .50). These two elements explain the positive skewness of
the put.

bod61789_appa.qxd  11/12/2003  1:38 PM  Page 1014



Appendix A 1015

makes it most convenient for portfolio analysis is that any weighted sum or
normally distributed random variables produce a random variable that also
is normally distributed. This property is called stability. It is also true that
if you add a constant to a “normal” random variable (meaning a random variable
with a normal probability distribution) or multiply it by a constant, then the
transformed random variable also will be normally distributed.

Suppose that n is any random variable (not necessarily normal) with expectation � and
standard deviation �. As we showed earlier, if you add a constant c to n, the standard devi-
ation is not affected at all, but the mean will change to � � c. If you multiply n by a con-
stant b, its mean and standard deviation will change by the same proportion to b� and b�.
If n is normal, the transformed variable also will be normal.

Stability, together with the property that a normal variable is completely characterized
by its expectation and standard deviation, implies that if we know one normal probability
distribution with a given expectation and standard deviation, we know them all.

Subtracting the expected value from each observation and then dividing by the standard
deviation we obtain the standard normal distribution, which has an expectation of zero and
both variance and standard deviation equal to 1.0. Formally, the relationship between the
value of the standard normal random variable, z, and its probability, f, is given by

(A.6)

where “exp” is the quantity e to the power of the expression in the parentheses. The quan-
tity e is an important number just like the well-known 	, which also appears in the func-
tion. It is important enough to earn a place on the keyboard of your financial calculator,
mostly because it is used also in continuous compounding.

Probability functions of continuous distributions are called densities and denoted by f,
rather than by the “Pr” of scenario analysis. The reason is that the probability of any of the
infinitely many possible values of z is infinitesimally small. Density is a function that al-
lows us to obtain the probability of a range of values by integrating it over a desired range.
In other words, whenever we want the probability that a standard normal variate (a random
variable) will fall in the range from z � a to z � b, we have to add up the density values,
f (z), for all zs from a to b. There are infinitely many zs in that range, regardless how close
a is to b. Integration is the mathematical operation that achieves this task.

f (z) �
1

�2p
  exp ¢�z2

2
≤

Area =
Pr(a ≤ r ≤ b)

Area = Pr(r ≥ b)
         = 1 – Pr(r ≤ b)Area = Pr(r ≤ a)

a b
r

0

Figure A.1
Probabilities
under the 
normal
density
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Consider first the probability that a standard normal variate will take on a value less than
or equal to a, that is, z is in the range [�
, a]. We have to integrate the density from 
 to a.
The result is called the cumulative (normal) distribution, denoted by N(a). When a ap-
proaches infinity, any value is allowed for z; hence the probability that z will end up in that
range approaches 1.0. It is a property of any density that when it is integrated over the
entire range of the random variable, the cumulative distribution is 1.0.

In the same way, the probability that a standard normal variate will take on a value less
than or equal to b is N(b). The probability that a standard normal variate will take on a
value in the range [a, b] is just the difference between N(b) and N(a). Formally,

Pr(a � z � b) � N(b) � N(a)

These concepts are illustrated in Figure A.1. The graph shows the normal density. It
demonstrates the symmetry of the normal density around the expected value (zero for the
standard normal variate, which is also the mode and the median), and the smaller likelihood
of larger deviations from expectation. As is true for any density, the entire area under the
density graph adds up to 1.0. The values a and b are chosen to be positive, so they are to
the right of the expected value. The leftmost colored shaded area is the proportion of the
area under the density for which the value of z is less than or equal to a. Thus this area
yields the cumulative distribution for a, the probability that z will be smaller than or equal
to a. The gray shaded area is the area under the density graph between a and b. If we add
that area to the cumulative distribution of a, we get the entire area up to b, that is, the prob-
ability that z will be anywhere to the left of b. Thus the area between a and b has to be the
probability that z will fall between a and b.

Applying the same logic, we find the probability that z will take on a value greater
than b. We know already that the probability that z will be smaller than or equal to b is
N(b). The compound events “smaller than or equal to b” and “greater than b” are mutually
exclusive and “exhaustive,” meaning that they include all possible outcomes. Thus their
probabilities sum to 1.0, and the probability that z is greater than b is simply equal to one
minus the probability that z is less than or equal to b. Formally, Pr(z � b) � 1 � N(b).

Look again at Figure A.1. The area under the density graph between b and infinity is just
the difference between the entire area under the graph (equal to 1.0) and the area between
minus infinity and b, that is, N(b).

The normal density is sufficiently complex that its cumulative distribution, its integral,
does not have an exact formulaic closed-form solution. It must be obtained by numerical
(approximation) methods. These values are produced in tables that give the value N(z) for
any z, such as Table 21.2 of this text.

To illustrate, let us find the following probabilities for a standard normal variate:

Pr(z � � .36) � N(�.36) � Probability that z is less than or equal to �.36
Pr(z � .94) � N(.94) � Probability that z is less than or equal to .94

Pr(�.36 � z � .94) � N(.94) � N(�.36) � Probability that z will be in the range [�.36, .94]
Pr(z � .94) � 1 � N(.94) � Probability that z is greater than .94

Use Table 21.2 of the cumulative standard normal (sometimes called the area under the
normal density) and Figure A.2. The table shows that

N(�.36) � .3594
N(.94) � .8264

In Figure A.2 the area under the graph between �.36 and .94 is the probability that z will
fall between �.36 and .94. Hence

Pr(�.36 � z � .94) � N(.94) � N(�.36) � .8264 � .3594 � .4670
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The probability that z is greater than .94 is the area under the graph in Figure A.2, between
.94 and infinity. Thus it is equal to the entire area (1.0) less the area from minus infinity
to .94. Hence

Pr(z � .94) � 1 � N(.94) � 1 � .8264 � .1736

Finally, one can ask, What is the value a for which z will be smaller than or equal to a
with probability P? The notation for the function that yields the desired value of a is 
(P),
so that

If 
(P) � a, then P � N(a) (A.7)

For instance, suppose the question is, Which value has a cumulative density of .50?
A glance at Figure A.2 reminds us that the area between minus infinity and zero (the ex-
pected value) is .5. Thus we can write


(.5) � 0, because N(0) � .5

Similarly,


(.8264) � .94, because N(.94) � .8264

and


(.3594) � �.36

For practice, confirm with Table 21.2 that 
(.6554) � .40, meaning that the value of z
with a cumulative distribution of .6554 is z � .40.

Nonstandard Normal Distributions. Suppose that the monthly rate of return on a
stock is closely approximated by a normal distribution with a mean of .015 (1.5% per
month), and standard deviation of .127 (12.7% per month). What is the probability that the
rate of return will fall below zero in a given month? Recall that because the rate is a nor-
mal variate, its cumulative density has to be computed by numerical methods. The standard
normal table can be used for any normal variate.

Any random variable, x, may be transformed into a new standardized variable, x*, by
the following rule:

(A.8)x* �
x � E(x)

�(x)

0 .94–.36

N (–.36)

1 – N (.94)

N (.94) – N (–.36)

Figure A.2
Probabilities
and the
cumulative
normal
distribution

bod61789_appa.qxd  11/12/2003  1:38 PM  Page 1017



Note that all we have done to x was (1) subtract its expectation and (2) multiply by one over
its standard deviation, 1/[�(x)]. According to our earlier discussion, the effect of trans-
forming a random variable by adding and multiplying by a constant is such that the expec-
tation and standard deviation of the transformed variable are

(A.9)

From the stability property of the normal distribution we also know that if x is normal,
so is x*. A normal variate is characterized completely by two parameters: its expectation
and standard deviation. For x*, these are zero and 1.0, respectively. When we subtract the
expectation and then divide a normal variate by its standard deviation, we standardize it;
that is, we transform it to a standard normal variate. This trick is used extensively in work-
ing with normal (and approximately normal) random variables.

Returning to our stock, we have learned that if we subtract .015 and then divide the
monthly returns by .127, the resultant random variable will be standard normal. We can
now determine the probability that the rate of return will be zero or less in a given month.
We know that

where z is standard normal and r the return on our stock. Thus if r is zero, z has to be

For r to be zero, the corresponding standard normal has to be �11.81%, a negative
number. The event “r will be zero or less” is identical to the event “z will be �.1181 or
less.” Calculating the probability of the latter will solve our problem. That probability is
simply N(�.1181). Visit the standard normal table and find that

Pr(r � 0) � N(�.1181) � .5 � .047 � .453

The answer makes sense. Recall that the expectation of r is 1.5%. Thus, whereas the
probability that r will be 1.5% or less is .5, the probability that it will be zero or less has to
be close, but somewhat lower.

Confidence Intervals. Given the large standard deviation of our stock, it is logical to
be concerned about the likelihood of extreme values for the monthly rate of return. One
way to quantify this concern is to ask: What is the interval (range) within which the stock
return will fall in a given month, with a probability of .95? Such an interval is called the
95% confidence interval.

Logic dictates that this interval be centered on the expected value, .015, because r is a
normal variate (has a normal distribution) which is symmetric around the expectation. De-
note the desired interval by

[E(r) � a, E(r) � a] � [.015 � a, .015 � a]

which has a length of 2a. The probability that r will fall within this interval is described by
the following expression:

Pr(.015 � a � r � .015 � a) � .95

To find this probability, we start with a simpler problem, involving the standard normal
variate, that is, a normal with expectation of zero and standard deviation of 1.0.

z(r � 0) �
0 � .015

.127
� �.1181

z �
r � .015

.127

E(x*) �
E(x) � E(x)

�(x)
� 0;    �(x*) �

�(x)
�(x)

� 1
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What is the 95% confidence interval for the standard normal variate, z? The variable
will be centered on zero, so the expression is

Pr(�a* � z � a*) � N(a*) � N(�a*) � .95

You might best understand the substitution of the difference of the appropriate cumula-
tive distributions for the probability with the aid of Figure A.3. The probability of falling
outside of the interval is 1 � .95 � .05. By the symmetry of the normal distribution, z will
be equal to or less than �a* with probability of .025, and with probability .025, z will be
greater than a*. Thus we solve for a* using

�a* � 
(.025), which is equivalent to N(�a*) � .025

We can summarize the chain that we have pursued so far as follows. If we seek a
P � .95 level confidence interval, we define � as the probability that r will fall outside the
confidence interval. Because of the symmetry, � will be split so that half of it is the proba-
bility of falling to the right of the confidence interval, while the other half is the probability
of falling to the left of the confidence interval. Therefore, the relation between � and P is

We use �/2 to indicate that the area that is excluded for r is equally divided between
the tails of the distributions. Each tail that is excluded for r has an area of �/2. The value
� � 1 � P represents the entire value that is excluded for r.

To find z � 
(�/2), which is the lower boundary of the confidence interval for the stan-
dard normal variate, we have to locate the z value for which the standard normal cumu-
lative distribution is .025, finding z � �1.96. Thus we conclude that �a* � �1.96 and
a* � 1.96. The confidence interval for z is

[E(z) � 
(�/2), E(z) � 
(�/2)] � [�
(.025), 
(.025)]

� [�1.96, .196]

� � 1 � P � .05;    �
2

�
1 � P

2
� .025

N (–1.96) = .025 1 – N (1.96) = .025

E (r) = .015

–a* = –1.96
= – Φ (.025)

a* = 1.96
=  Φ (.975)

  a = .26
=  .015 + σ Φ (.975) 

  –a = –.23
= .015 – σ Φ (.025)

z = r – E(r)
σ

r = σ z + E(r )

E (z) = 0

Figure A.3 Confidence intervals and the standard normal density
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To get the interval boundaries for the nonstandard normal variate r, we transform the
boundaries for z by the usual relationship, r � z�(r) � E(r) � 
(�/2)�(r) � E(r). Note that
all we are doing is setting the expectation at the center of the confidence interval and
extending it by a number of standard deviations. The number of standard deviations is
determined by the probability that we allow for falling outside the confidence interval
(�), or, equivalently, the probability of falling in it (P). Using minus and plus 1.96 for
z � � 
( /.25), the distance on each side of the expectation is �1.96 � .127 � .249. Thus
we obtain the confidence interval

[E(r) � �(r)
(�/2), E(r) � �(r)
(�/2)] � [E(r) � .249, E(r) � .249]

� [�.234, .264]

so that

P � 1 � � � Pr[E(r) � �(r)
(�/2) � r � E(r) � �(r)
(�/2)]

which, for our stock (with expectation .015 and standard deviation .127), amounts to

Pr[�.234 � r � .264] � .95

Note that because of the large standard deviation of the rate of return on the stock, the 95%
confidence interval is 49% wide.

To reiterate with a variation on this example, suppose we seek a 90% confidence inter-
val for the annual rate of return on a portfolio, rp, with a monthly expected return of 1.2%
and standard deviation of 5.2%.

The solution is simply

Because the portfolio is of low risk this time (and we require only a 90% rather than a 95%
probability of falling within the interval), the 90% confidence interval is only 2.4% wide.

The Lognormal Distribution. The normal distribution is not adequate to describe
stock prices and returns for two reasons. First, whereas the normal distribution admits any
value, including negative values, actual stock prices cannot be negative. Second, the nor-
mal distribution does not account for compounding. The lognormal distribution addresses
these two problems.

The lognormal distribution describes a random variable that grows, every instant, by a
rate that is a normal random variable. Thus the progression of a lognormal random variable
reflects continuous compounding.

Suppose that the annual continuously compounded (ACC) rate of return on a stock is
normally distributed with expectation � � .12 and standard deviation � � .42. The stock
price at the beginning of the year is P0 � $10. With continuous compounding (see appen-
dix to Chapter 5), if the ACC rate of return, rC, turns out to be .23, then the end-of-year
price will be

P1 � P0exp(rC) � 10e.23 � $12.586

representing an effective annual rate of return of

r � � 1 � .2586 (or 25.86%)
P1 � P0

P0
� erC

 � Pr[ � .0735 � rp � .0975] � .90

 � Pr[(.012 � .052 � 1.645) � rp � (.012 � .052 � 1.645)]

Pr cE(r) � �(r) 
 ¢1 � P
2
≤�  rp � E(r) � � (r) 
 ¢1 � P

2
≤ d

0
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This is the practical meaning of r, the annual rate on the stock, being lognormally dis-
tributed. Note that however negative the ACC rate of return (rC) is, the price, P1, cannot be-
come negative.

Two properties of lognormally distributed financial assets are important: their expected
return and the allowance for changes in measurement period.

Expected Return of a Lognormally Distributed Asset. The expected annual rate
of return of a lognormally distributed stock (as in our example) is

E(r) � exp(� � �2/2) � 1 � exp(.12 � .422/2) � 1 � e.2082 � 1

� .2315 (or 23.15%)

This is just a statistical property of the distribution. For this reason, a useful statistic is

�* � � � �2/2 � .2082

When analysts refer to the expected ACC return on a lognormal asset, frequently they
are really referring to �*. Often the asset is said to have a normal distribution of the ACC
return with expectation �* and standard deviation �.

Change of Frequency of Measured Returns. The lognormal distribution allows for
easy change of the holding period of returns. Suppose that we want to calculate returns
monthly instead of annually. We use the parameter t to indicate the fraction of the year that
is desired; in the case of monthly periods, t � 1/12. To transform the annual distribution to
a t-period (monthly) distribution, it is necessary merely to multiply the expectation and
variance of the ACC return by t (in this case, 1/12).

The monthly continuously compounded return on the stock in our example has the
expectation and standard deviation of

�(monthly) � .12/12 � .01 (1% per month)

�(monthly) � .42/ � .1212 (or 12.12% per month)

�*(monthly) � .2082/12 � .01735 (or 1.735% per month)

Note that we divide variance by 12 when changing from annual to monthly frequency; the
standard deviation therefore is divided by the square root of 12.

Similarly, we can convert a nonannual distribution to an annual distribution by follow-
ing the same routine. For example, suppose that the weekly continuously compounded rate
of return on a stock is normally distributed with �* � .003 and � � .07. Then the ACC
return is distributed with

�* � 52 � .003 � .156 (or 15.6% per year)

� � � .07 � .5048 (or 50.48% per year)

In practice, to obtain normally distributed, continuously compounded returns, R, we
take the log of 1.0 plus the raw returns:

R � log(1 � r)

For short intervals, raw returns are small, and the continuously compounded returns, R, will
be practically identical to the raw returns, r. The rule of thumb is that this conversion is not
necessary for periods of 1 month or less. That is, approximating stock returns as nor-
mal will be accurate enough. For longer intervals, however, the transformation may be
necessary.

�52

�12
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A.2 DESCRIPTIVE STATISTICS
Our analysis so far has been forward looking, or, as economists like to say, ex ante. We
have been concerned with probabilities, expected values, and surprises. We made our
analysis more tractable by assuming that decision outcomes are distributed according to
relatively simple formulas and that we know the parameters of these distributions.

Investment managers must satisfy themselves that these assumptions are reasonable,
which they do by constantly analyzing observations from relevant random variables that
accumulate over time. Distribution of past rates of return on a stock is one element they
need to know in order to make optimal decisions. True, the distribution of the rate of return
itself changes over time. However, a sample that is not too old does yield information rele-
vant to the next-period probability distribution and its parameters. In this section we ex-
plain descriptive statistics, or the organization and analysis of such historic samples.

Table A.3 shows the annual excess returns (over the T-bill rate) for two
major classes of assets, the S&P 500 index and a portfolio of long-term
government bonds, for the period 1926 to 1993.

One way to understand the data is to present it graphically, commonly in a histogram
or frequency distribution. Histograms of the 68 observations in Table A.3 are shown in Fig-
ure A.4. We construct a histogram according to the following principles:

• The range (of values) of the random variable is divided into a relatively small
number of equal-sized intervals. The number of intervals that makes sense
depends on the number of available observations. The data in Table A.3
provide 68 observations, and thus deciles (10 intervals) seem adequate.

• A rectangle is drawn over each interval. The height of the rectangle represents
the frequency of observations for each interval.

• If the observations are concentrated in one part of the range, the range may be
divided to unequal intervals. In that case the rectangles are scaled so that their
area represents the frequency of the observations for each interval. (This is
not the case in our samples, however.)

• If the sample is representative, the shape of the histogram will reveal the
probability distribution of the random variable. Our total of 68 observations is
not a large sample, but a look at the histogram does suggest that the returns may
be reasonably approximated by a normal or lognormal distribution.

Another way to represent sample information graphically is by boxplots. Figure A.5 is
an example that uses the same data as in Table A.3. Boxplots are most useful to show the
dispersion of the sample distribution. A commonly used measure of dispersion is the inter-
quartile range. Recall that the range, a crude measure of dispersion, is defined as the
distance between the largest and smallest observations. By its nature, this measure is un-
reliable because it will be determined by the two most extreme outliers of the sample.

The interquartile range, a more satisfactory variant of the simple range, is defined as the
difference between the lower and upper quartiles. Below the lower quartile lies 25% of
the sample; similarly, above the upper quartile lies 25% of the sample. The interquartile
range therefore is confined to the central 50% of the sample. The greater the dispersion of a
sample, the greater the distance between these two values.

In the boxplot the horizontal broken line represents the median, the box the interquartile
range, and the vertical lines extending from the box the range. The vertical lines represent-
ing the range often are restricted (if necessary) to extend only to 1.5 times the interquartile

Histograms, Boxplots,
and Time Series Plots
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range, so that the more extreme observations can be shown separately (by points) as
outliers.

As a concept check, verify from Table A.3 that the points on the boxplot of Figure A.5
correspond to the following list on page 1025:

Table A.3 Excess Return (Risk Premiums) on Stocks and Long-Term Treasury Bonds
(Maturity Premiums)

Equity Risk Maturity Equity Risk Maturity 
Year Premium Premium Year Premium Premium

1926 8.35 4.50 1963 19.68 �1.91

1927 34.37 5.81 1964 12.94 �0.03

1928 40.37 �3.14 1965 8.52 �3.22

1929 �13.17 �1.33 1966 �14.82 �1.11

1930 �27.31 2.25 1967 19.77 �13.40

1931 �44.41 �6.38 1968 5.85 �5.47

1932 �9.15 15.88 1969 �15.08 �11.66

1933 53.69 �0.38 1970 �2.52 5.57

1934 �1.60 9.86 1971 9.92 8.84

1935 47.50 4.81 1972 15.14 1.84

1936 33.74 7.33 1973 �21.59 �8.04

1937 �35.34 �0.08 1974 �34.47 �3.65

1938 31.14 5.55 1975 31.40 3.39

1939 �0.43 5.92 1976 18.76 11.67

1940 �9.78 6.09 1977 �12.30 �5.79

1941 �11.65 0.87 1978 �0.62 �8.34

1942 20.07 2.95 1979 8.06 �11.60

1943 25.55 1.73 1980 21.18 �15.19

1944 19.42 2.48 1981 �19.62 �12.86

1945 36.11 10.40 1982 10.87 29.81

1946 �8.42 �0.45 1983 13.71 �8.12

1947 5.21 �3.13 1984 �3.58 5.58

1948 4.69 2.59 1985 24.44 23.25

1949 17.69 5.35 1986 12.31 18.28

1950 30.51 �1.14 1987 �0.24 �8.16

1951 22.53 �5.43 1988 10.46 3.32

1952 16.71 �0.50 1989 23.12 9.74

1953 �2.81 1.81 1990 �10.98 �1.63

1954 51.76 6.33 1991 24.95 13.70

1955 29.99 �2.87 1992 4.16 4.54

1956 4.10 �8.05 1993 7.09 15.34

1957 �13.92 4.31

1958 41.82 �7.64 Average 8.57 1.62

1959 9.01 �5.21 Standard deviation 20.90 8.50

1960 �3.13 11.12 Minimum �44.41 �15.19

1961 24.76 �1.16 Maximum 53.69 29.81

1962 �11.46 4.16

Source: Data from the Center for Research of Security Prices, University of Chicago.

bod61789_appa.qxd  11/12/2003  1:38 PM  Page 1023



1024 APPENDIX A Quantitative Review

Source: The Wall Street Journal, October 15, 1997. Reprinted by permission of The Wall Street Journal, © 1997 Dow Jones &
Company, Inc. All Rights Reserved Worldwide.
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Equity Risk Premium Bond Maturity Premium

Lowest extreme points �44.41 �15.19

�35.34 �13.40

�34.47 �12.86

�27.31 �11.66

�21.59 �11.60

�19.62 �8.34

�15.08 �8.16

�14.82 �8.12

�13.92 �8.05

�13.17 �8.04

�12.30 �7.64

�6.38

�5.79

�5.47

�5.43

�5.21

Lowest quartile �4.79 �3.33

Median 8.77 1.77

Highest quartile 22.68 5.64

Highest extreme points 29.99 8.84

30.51 9.74

31.14 9.86

31.40 10.40

33.74 11.12

34.37 11.67

36.11 13.70

40.37 15.34

41.82 15.88

47.50 18.28

51.76 23.25

53.69 29.81

Interquartile range 27.47 8.97

1.5 times the interquartile range 41.20 13.45

From: �11.84 �4.95

To: 29.37 8.49

Finally, a third form of graphing is time series plots, which are used to convey the be-
havior of economic variables over time. Figure A.6 shows a time series plot of the excess
returns on stocks and bonds from Table A.3. Even though the human eye is apt to see pat-
terns in randomly generated time series, examining time series’ evolution over a long
period does yield some information. Sometimes, such examination can be as revealing as
that provided by formal statistical analysis.

Suppose we can assume that the probability distribution of stock returns has
not changed over the 68 years from 1926 to 1993. We wish to draw infer-

ences about the probability distribution of stock returns from the sample of 68 observations
of annual stock excess returns in Table A.3.

Sample Statistics
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A central question is whether given observations represent independent observations
from the underlying distribution. If they do, statistical analysis is quite straightforward. Our
analysis assumes that this is indeed the case. Empiricism in financial markets tends to con-
firm this assumption in most cases.

Estimating Expected Returns from the Sample Average. The definition of
expected returns suggests that the sample average be used as an estimate of the expected
value. Indeed, one definition of the expected return is the average of a sample when the
number of observations tends to infinity.

1026 APPENDIX A Quantitative Review
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Denoting the sample returns in Table A.3 by Rt, t � 1, . . . , T � 68, the estimate of the
annual expected excess rate of return is

R �
1
T

 �Rt � 8.57%
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Figure A.6 A. Equity risk premium, 1926–1993; B. bond maturity premium, 1926–1993.
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The bar over the R is a common notation for an estimate of the expectation. Intuition sug-
gests that the larger the sample, the greater the reliability of the sample average, and the
larger the standard deviation of the measured random variable, the less reliable the average.
We discuss this property more fully later.

Estimating Higher Moments. The principle of estimating expected values from
sample averages applies to higher moments as well. Recall that higher moments are de-
fined as expectations of some power of the deviation from expectation. For example, the
variance (second moment) is the expectation of the squared deviation from expectation.
Accordingly, the sample average of the squared deviation from the average will serve as the
estimate of the variance, denoted by s2:

where is the estimate of the sample average. The average of the squared deviation is
taken over T � 1 � 67 observations for a technical reason. If we were to divide by T, the
estimate of the variance would be downward-biased by the factor (T � 1)/T. Here too, the
estimate is more reliable the larger the sample and the smaller the true standard deviation.

A.3 MULTIVARIATE STATISTICS
Building portfolios requires combining random variables. The rate of return on a portfolio
is the weighted average of the individual returns. Hence understanding and quantifying
the interdependence of random variables is essential to portfolio analysis. In the first part
of this section we return to scenario analysis. Later we return to making inferences from
samples.

Table A.4 summarizes what we have developed so far for the scenario
returns on Anheuser-Busch stock and options. We know already what
happens when we add a constant to one of these return variables or multiply

by a constant. But what if we combine any two of them? Suppose that we add the return
on the stock to the return on the call. We create a new random variable that we denote by 
r (s � c) � r (s) � r (c), where r (s) is the return on the stock and r (c) is the return on
the call.

The Basic Measure of
Association: Covariance

R

s2 �
1

T � 1
  �(Rt � R)2 �

1
67

  �(Rt � .0857)2 � .04368    (s � 20.90%)

1028 APPENDIX A Quantitative Review

Table A.4 Probability Distribution of Anheuser-Busch Stock and Options

Scenario 1 Scenario 2 Scenario 3

Probability .20 .50 .30

Rates of Return (%)

Stock 20 30 50

Call option �100 �100 400

Put option 50 �25 �100

E(r ) � �2

Stock .340 0.1114 0.0124

Call option .500 2.2913 5.2500

Put option �.325 0.5250 0.2756
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From the definition, the expected value of the combination variable is

E[r (s � c)] � �Pr(i )ri (s � c) (A.10)

Substituting the definition of r (s � c) into equation A.10 we have

E[r (s � c)] � �Pr(i )[ri (s) � ri (c)]� �Pr (i )ri (s) � �Pr(i )ri (c)
(A.11)

� E[r (s)] � E[r (c)]

In words, the expectation of the sum of two random variables is just the sum of the expec-
tations of the component random variables. Can the same be true about the variance? The
answer is “no,” which is, perhaps, the most important fact in portfolio theory. The reason
lies in the statistical association between the combined random variables.

As a first step, we introduce the covariance, the basic measure of association. Although
the expressions that follow may look intimidating, they are merely squares of sums; that is,
(a � b)2 � a2 � b2 � 2ab, and (a � b)2 � a2 � b2 � 2ab, where the as and bs might stand
for random variables, their expectations or their deviations from expectations. From the de-
finition of the variance

�2
s�c � E[rs � c � E(rs � c)]2 (A.12)

To make equations A.12 through A.20 easier to read, we will identify the variables by
subscripts s and c and drop the subscript i for scenarios. Substitute the definition of r (s �
c) and its expectation into equation A.12:

�2
s�c � E[rs � rc � E(rs) � E(rc)]2 (A.13)

Changing the order of variables within the brackets in equation A.13,

�2
s�c � E[rs � E(rs) � rc � E(rc)]2

Within the square brackets we have the sum of the deviations from expectations of the
two variables, which we denote by d. Writing this out,

�2
s�c � E[(ds � dc)2] (A.14)

Equation A.14 is the expectation of a complete square. Taking the square, we find

�2
s�c � E(d 2

s � d 2
c � 2ds dc) (A.15)

The term in parentheses in equation A.15 is the summation of three random variables. Be-
cause the expectation of a sum is the sum of the expectations, we can write equation A.15 as

�2
s�c � E(d 2

s) � E(d 2
c) � 2E(ds dc) (A.16)

In equation A.16 the first two terms on the right-hand side are the variance of the stock
(the expectation of its squared deviation from expectation) plus the variance of the call. The
third term is twice the expression that is the definition of the covariance discussed in equa-
tion A.17. (Note that the expectation is multiplied by 2 because expectation of twice a vari-
able is twice the variable’s expectation.)

In other words, the variance of a sum of random variables is the sum of the variances
plus twice the covariance, which we denote by Cov(rs, rc), or the covariance between the
return on s and the return on c. Specifically,

Cov(rs , rc) � E(ds dc) � E{[rs � E(rs)][rc � E(rc)]} (A.17)

The sequence of the variables in the expression for the covariance is of no consequence.
Because the order of multiplication makes no difference, the definition of the covariance in
equation A.17 shows that it will not affect the covariance either.
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We use the data in Table A.4 to set up the input table for the calculation of the covari-
ance, as shown in Table A.5.

First, we analyze the covariance between the stock and the call. In Scenarios 1 and 2,
both assets show negative deviations from expectation. This is an indication of positive co-
movement. When these two negative deviations are multiplied, the product, which eventu-
ally contributes to the covariance between the returns, is positive. Multiplying deviations
leads to positive covariance when the variables move in the same direction and negative
covariance when they move in opposite directions. In Scenario 3 both assets show positive
deviations, reinforcing the inference that the co-movement is positive. The magnitude of
the products of the deviations, weighted by the probability of each scenario, when added
up, results in a covariance that shows not only the direction of the co-movement (by its
sign) but also the degree of the co-movement.

The covariance is a variance-like statistic. Whereas the variance shows the degree of the
movement of a random variable about its expectation, the covariance shows the degree of
the co-movement of two variables about their expectations. It is important for portfolio
analysis that the covariance of a variable with itself is equal to its variance. You can see this
by substituting the appropriate deviations in equation A.17; the result is the expectation of
the variable’s squared deviation from expectation.

The first three values in the last column of Table A.5 are the familiar variances of the
three assets, the stock, the call, and the put. The last three are the covariances; two of them
are negative. Examine the covariance between the stock and the put, for example. In the
first two scenarios the stock realizes negative deviations, while the put realizes positive de-
viations. When we multiply such deviations, the sign becomes negative. The same happens
in the third scenario, except that the stock realizes a positive deviation and the put a nega-
tive one. Again, the product is negative, adding to the inference of negative co-movement.

With other assets and scenarios the product of the deviations can be negative in some
scenarios, positive in others. The magnitude of the products, when weighted by the prob-
abilities, determines which co-movements dominate. However, whenever the sign of the
products varies from scenario to scenario, the results will offset one another, contributing
to a small, close-to-zero covariance. In such cases we may conclude that the returns have
either a small, or no, average co-movement.

1030 APPENDIX A Quantitative Review

Table A.5 Deviations, Squared Deviations, and Weighted Products
of Deviations from Expectations of Anheuser-Busch
Stock and Options

Probability-
Scenario 1 Scenario 2 Scenario 3 Weighted Sum

Probability 0.20 0.50 0.30

Deviation of stock �0.14 �0.04 0.16

Squared deviation 0.0196 0.0016 0.0256 0.0124

Deviation of call �1.50 �1.50 3.50

Squared deviation 2.25 2.25 12.25 5.25

Deviation of put 0.825 0.75 �0.675

Squared deviation 0.680625 0.005625 0.455635 0.275628

Product of deviations (ds dc) 0.21 0.06 0.56 0.24

Product of deviations (ds dp) �0.1155 �0.003 �0.108 �0.057

Product of deviations (dc dp) �1.2375 �0.1125 �2.3625 �1.0125
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Covariance between Transformed Variables. Because the covariance is the ex-
pectation of the product of deviations from expectation of two variables, analyzing the
effect of transformations on deviations from expectation will show the effect of the trans-
formation on the covariance.

Suppose that we add a constant to one of the variables. We know already that the
expectation of the variable increases by that constant, so deviations from expectation will
remain unchanged. Just as adding a constant to a random variable does not affect its vari-
ance, it also will not affect its covariance with other variables.

Multiplying a random variable by a constant also multiplies its expectation, as well as
its deviation from expectation. Therefore, the covariance with any other variable will also
be multiplied by that constant. Using the definition of the covariance, check that this sum-
mation of the foregoing discussion is true:

Cov(a1 � b1 rs , a2 � b2rc) � b1 b2Cov(rs , rc) (A.18)

The covariance allows us to calculate the variance of sums of random variables, and
eventually the variance of portfolio returns.

If we tell you that the covariance between the rates of return of the stock and
the call is .24 (see Table A.5), what have you learned? Because the sign is
positive, you know that the returns generally move in the same direction.
However, the number .24 adds nothing to your knowledge of the closeness

of co-movement of the stock and the call.
To obtain a measure of association that conveys the degree of intensity of the co-

movement, we relate the covariance to the standard deviations of the two variables. Each
standard deviation is the square root of the variance. Thus the product of the standard de-
viations has the dimensions of the variance that is also shared by the covariance. Therefore,
we can define the correlation coefficient, denoted by �, as

�sc � (A.19)

where the subscripts on r identify the two variables involved. Because the order of the vari-
ables in the expression of the covariance is of no consequence, equation A.19 shows that
the order does not affect the correlation coefficient either.

We use the covariances in Table A.5 to show the correlation matrix for the three
variables:

Stock Call Put

Stock 1.00 0.94 �0.97

Call 0.94 1.00 �0.84

Put �0.97 �0.84 1.00

The highest (in absolute value) correlation coefficient is between the stock and the put,
�.97, although the absolute value of the covariance between them is the lowest by far. The
reason is attributable to the effect of the standard deviations. The following properties of
the correlation coefficient are important:

• Because the correlation coefficient, just as the covariance, measures only the
degree of association, it tells us nothing about causality. The direction of
causality has to come from theory and be supported by specialized tests.

• The correlation coefficient is determined completely by deviations from
expectations, as are the components in equation A.19. We expect, therefore, that it

Cov(rs, rc)
�s�c

A Pure Measure
of Association: The

Correlation Coefficient
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is not affected by adding constants to the associated random variables. However,
the correlation coefficient is invariant also to multiplying the variables by constants.
You can verify this property by referring to the effect of multiplication by a constant
on the covariance and standard deviation.

• The correlation coefficient can vary from �1.0, perfect negative correlation, to
1.0, perfect positive correlation. This can be seen by calculating the correlation
coefficient of a variable with itself. You expect it to be 1.0. Recalling that the
covariance of a variable with itself is its own variance, you can verify this
using equation A.19. The more ambitious can verify that the correlation between
a variable and the negative of itself is equal to �1.0. First, find from equation A.17
that the covariance between a variable and its negative equals the negative of the
variance. Then check equation A.19.

Because the correlation between x and y is the same as the correlation between y and x,
the correlation matrix is symmetric about the diagonal. The diagonal entries are all 1.0 be-
cause they represent the correlations of returns with themselves. Therefore, it is customary
to present only the lower triangle of the correlation matrix.

Reexamine equation A.19. You can invert it so that the covariance is presented in terms
of the correlation coefficient and the standard deviations as in equation A.20:

Cov(rs rc) � �sc �s �c (A.20)

This formulation can be useful, because many think in terms of correlations rather than
covariances.

Estimating Correlation Coefficients from Sample Returns. Assuming that a
sample consists of independent observations, we assign equal weights to all observations
and use simple averages to estimate expectations. When estimating variances and covari-
ances, we get an average by dividing by the number of observations minus one.

Suppose that you are interested in estimating the correlation between stock and long-
term default-free government bonds. Assume that the sample of 68 annual excess returns
for the period 1926 to 1993 in Table A.3 is representative.

Using the definition for the correlation coefficient in equation A.19, you estimate the
following statistics (using the subscripts s for stocks, b for bonds, and t for time):

Here is one example of how problematic estimation can be. Recall that we predicate our
use of the sample on the assumption that the probability distributions have not changed
over the sample period. To see the problem with this assumption, suppose that we reesti-
mate the correlation between stocks and bonds over a more recent period—for example,

 �sb �
Cov(Rs, Rb)

�s�b
� .17916

Cov(Rs, Rb) �
1

67
 �[(Rs, t � Rs)(Rb, t � Rb)] � .00314

 �b � c 1
67

 �(Rb, t � Rb)2 d 1/2

� .0850

 �s � c 1
67

 �(Rs, t � Rs)2 d 1/2

� .2090

 Rs �
1
68

 �
68

i�1

 Rs, t � .0857;    Rb �
1

68
 � Rb, t � 0.162
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beginning in 1965, about the time of onset of government debt financing of both the war in
Vietnam and the Great Society programs.

Repeating the previous calculations for the period 1965 to 1987, we find

� .0312; � �.00317

�s � .15565; �b � .11217

Cov(Rs , Rb) � .0057; �sb � .32647

A comparison of the two sets of numbers suggests that it is likely, but by no means cer-
tain, that the underlying probability distributions have changed. The variance in the rates of
return and the size of the sample are why we cannot be sure. We shall return to the issue of
testing the sample statistics shortly.

We will use a problem from the CFA examination (Level I, 1986) to repre-
sent the degree of understanding of regression analysis that is required for

the ground level. However, first let us develop some background.
In analyzing measures of association so far, we have ignored the question of causality,

identifying simply independent and dependent variables. Suppose that theory (in its most
basic form) tells us that all asset excess returns are driven by the same economic force
whose movements are captured by a broad-based market index, such as excess return on
the S&P 500 stock index.

Suppose further that our theory predicts a simple, linear relationship between the excess
return of any asset and the market index. A linear relationship, one that can be described by
a straight line, takes on this form:

Rj, t � aj � bj RM, t � ej, t (A.21)

where the subscript j represents any asset, M represents the market index (the S&P 500),
and t represents variables that change over time. (In the following discussion we omit sub-
scripts when possible.) On the left-hand side of equation A.21 is the dependent variable, the
excess return on asset j. The right-hand side has two parts, the explained and unexplained
(by the relationship) components of the dependent variable.

The explained component of Rj is the a � bRM part. It is plotted in Figure A.7. The
quantity a, also called the intercept, gives the value of Rj when the independent variable is
zero. This relationship assumes that it is a constant. The second term in the explained part
of the return represents the driving force, RM , times the sensitivity coefficient, b, that trans-
mits movements in RM to movements in Rj . The term b is also assumed to be constant. Fig-
ure A.7 shows that b is the slope of the regression line.

The unexplained component of Rj is represented by the disturbance term, ej . The dis-
turbance is assumed to be uncorrelated with the explanatory variable, RM , and of zero
expectation. Such a variable is also called a noise variable because it contributes to the vari-
ance but not to the expectation of the dependent variable, Rj .

A relationship such as that shown in equation A.21 applied to data, with coefficients
estimated, is called a regression equation. A relationship including only one explanatory
variable is called simple regression. The parameters a and b are called (simple) regression
coefficients. Because every value of Rj is explained by the regression, the expectation and
variance of Rj are also determined by it. Using the expectation of the expression in equa-
tion A.21, we get

E(Rj) � a � bE(RM) (A.22)

Regression Analysis

RbRs
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The constant a has no effect on the variance of Rj. Because the variables rM and ej are
uncorrelated, the variance of the sum, bRM � e, is the sum of the variances. Accounting for
the parameter b multiplying RM , the variance of Rj will be

�2
j � b2 �2

M � �2
e (A.23)

Equation A.23 tells us that the contribution of the variance of RM to that of Rj depends
on the regression (slope) coefficient b. The term (b�M)2 is called the explained variance.
The variance of the disturbance makes up the unexplained variance.

The covariance between Rj and RM is also given by the regression equation. Setting up
the expression, we have

Cov(Rj , RM) � Cov(a � bRM � e, RM)
(A.24)

� Cov(bRM , RM) � bCov(RM , RM) � b�2
M

The intercept, a, is dropped because a constant added to a random variable does not affect
the covariance with any other variable. The disturbance term, e, is dropped because it is, by
assumption, uncorrelated with the market return.

Equation A.24 shows that the slope coefficient of the regression, b, is equal to

The slope thereby measures the co-movements of j and M as a fraction of the movement of
the driving force, the explanatory variable M.

One way to measure the explanatory power of the regression is by the fraction of the
variance of Rj that it explains. This fraction is called the coefficient of determination and
denoted by �2.

(A.25)�jM
2 �

b2�2
M

�2
j

�
b2�2

M

bM
2 �2

M � �2
e

b �
Cov(Rj, RM)

�2
M
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Actual Value
(a + bRM + ej)

Regression Prediction
(a + bRM)

a = Intercept

Rj

RM

Residual = Estimate of
                  disturbance

b = Slope
ej

Regression Line

Figure A.7
Simple regression
estimates and
residuals. The
intercept and
slope are chosen
so as to minimize
the sum of
the squared
deviations from
the regression
line.
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Note that the unexplained variance, �2
e , has to make up the difference between the coeffi-

cient of determination and 1.0. Therefore, another way to represent the coefficient of deter-
mination is by

Some algebra shows that the coefficient of determination is the square of the correlation
coefficient. Finally, squaring the correlation coefficient tells us what proportion of the vari-
ance of the dependent variable is explained by the independent (the explanatory) variable.

Estimation of the regression coefficients a and b is based on minimizing the sum of the
square deviation of the observations from the estimated regression line (see Figure A.7).
Your calculator, as well as any spreadsheet program, can compute regression estimates.

A past CFA examination included this question:

Question.
Pension plan sponsors place a great deal of emphasis on universe rankings when evaluating
money managers. In fact, it appears that sponsors assume implicitly that managers who rank in the
top quartile of a representative sample of peer managers are more likely to generate superior rela-
tive performance in the future than managers who rank in the bottom quartile.

The validity of this assumption can be tested by regressing percentile rankings of managers in
one period on their percentile rankings from the prior period.

1. Given that the implicit assumption of plan sponsors is true to the extent that there is
perfect correlation in percentile rankings from one period to the next, list the numerical
values you would expect to observe for the slope of the regression, and the R-squared of
the regression.

2. Given that there is no correlation in percentile rankings from period to period, list the
numerical values you would expect to observe for the intercept of the regression,
the slope of the regression, and the R-squared of the regression.

3. Upon performing such a regression, you observe an intercept of .51, a slope of �.05,
and an R-squared of .01. Based on this regression, state your best estimate of a manager’s
percentile ranking next period if his percentile ranking this period were .15.

4. Some pension plan sponsors have agreed that a good practice is to terminate managers
who are in the top quartile and to hire those who are in the bottom quartile. State what
those who advocate such a practice expect implicitly about the correlation and slope
from a regression of the managers’ subsequent ranking on their current ranking.

Answer.

1. Intercept � 0

Slope � 1

R-squared � 1

2. Intercept � .50

Slope � 0.0

R-squared � 0.0

3. 50th percentile, derived as follows:

y � a � bx

� .51 � 0.05(.15)

� .51 � .0075

� .5025

�2
jM � 1 �

� 2
e

� 2
j
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Given the very low R-squared, it would be difficult to estimate what the manager’s rank
would be.

4. Sponsors who advocate firing top-performance managers and hiring the poorest
implicitly expect that both the correlation and slope would be significantly negative.

In many cases, theory suggests that a number of independent, explanatory
variables drive a dependent variable. This concept becomes clear enough
when demonstrated by a two-variable case. A real estate analyst offers the

following regression equation to explain the return on a nationally diversified real estate
portfolio:

REt � a � b1 REt � 1 � b2 NVRt � et (A.26)

The dependent variable is the period t real estate portfolio, REt . The model specifies that
the explained part of that return is driven by two independent variables. The first is the pre-
vious period return, RE t � 1, representing persistence of momentum. The second explana-
tory variable is the current national vacancy rate, NVRt.

As in the simple regression, a is the intercept, representing the value that RE is expected
to take when the explanatory variables are zero. The (slope) regression coefficients, b1 and
b2, represent the marginal effect of the explanatory variables.

The coefficient of determination is defined exactly as before. The ratio of the variance
of the disturbance, e, to the total variance of RE is 1.0 minus the coefficient of determi-
nation. The regression coefficients are estimated here, too, by finding coefficients that
minimize the sum of squared deviations of the observations from the prediction of the
regression.

A.4 HYPOTHESIS TESTING
The central hypothesis of investment theory is that nondiversifiable (systematic) risk is re-
warded by a higher expected return. But do the data support the theory? Consider the data
on the excess return on stocks in Table A.3. The estimate of the expected excess return (the
sample average) is 8.57%. This appears to be a hefty risk premium, but so is the risk—the
estimate of the standard deviation for the same sample is 20.9%. Could it be that the posi-
tive average is just the luck of the draw? Hypothesis testing supplies probabilistic answers
to such concerns.

The first step in hypothesis testing is to state the claim that is to be tested. This is called
the null hypothesis (or simply the null), denoted by H0. Against the null, an alternative
claim (hypothesis) is stated, which is denoted by H1. The objective of hypothesis testing is
to decide whether to reject the null in favor of the alternative while identifying the proba-
bilities of the possible errors in the determination.

A hypothesis is specified if it assigns a value to a variable. A claim that the risk premium
on stocks is zero is one example of a specified hypothesis. Often, however, a hypothesis is
general. A claim that the risk premium on stocks is not zero would be a completely general
alternative against the specified hypothesis that the risk premium is zero. It amounts to
“anything but the null.” The alternative that the risk premium is positive, although not com-
pletely general, is still unspecified. Although it is sometimes desirable to test two unspeci-
fied hypotheses (e.g., the claim that the risk premium is zero or negative, against the claim
that it is positive), unspecified hypotheses complicate the task of determining the probabil-
ities of errors in judgment.

Multiple Regression
Analysis
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What are the possible errors? There are two, called Type I and Type II errors. Type I is
the event that we will reject the null when it is true. The probability of Type I error is called
the significance level. Type II is the event that we will accept the null when it is false.

Suppose we set a criterion for acceptance of H0 that is so lax that we know for certain
we will accept the null. In doing so we will drive the significance level to zero (which is
good). If we will never reject the null, we will also never reject it when it is true. At the
same time the probability of Type II error will become 1 (which is bad). If we will accept
the null for certain, we must also do so when it is false.

The reverse is to set a criterion for acceptance of the null that is so stringent that we
know for certain that we will reject it. This drives the probability of Type II error to zero
(which is good). By never accepting the null, we avoid accepting it when it is false. Now,
however, the significance level will go to 1 (which is bad). If we always reject the null, we
will reject it even when it is true.

To compromise between the two evils, hypothesis testing fixes the significance level;
that is, it limits the probability of Type I error. Then, subject to this present constraint, the
ideal test will minimize the probability of Type II error. If we avoid Type II error (accept-
ing the null when it is false) we actually reject the null when it is indeed false. The prob-
ability of doing so is one minus the probability of Type II error, which is called the power
of the test. Minimizing the probability of Type II error maximizes the power of the test.

Testing the claim that stocks earn a risk premium, we set the hypotheses as

H0:E(R) � 0 The expected excess return is zero

H1:E(R) � 0 The expected excess return is positive

H1 is an unspecified alternative. When a null is tested against a completely general alter-
native, it is called a two-tailed test because you may reject the null in favor of both greater
or smaller values.

When both hypotheses are unspecified, the test is difficult because the calculation of the
probabilities of Type I and II errors is complicated. Usually, at least one hypothesis is sim-
ple (specified) and set as the null. In that case it is relatively easy to calculate the sig-
nificance level of the test. Calculating the power of the test that assumes the unspecified
alternative is true remains complicated; often it is left unsolved.

As we will show, setting the hypothesis that we wish to reject, E(R) � 0 as the null (the
“straw man”), makes it harder to accept the alternative that we favor, our theoretical bias,
which is appropriate.

In testing E(R) � 0, suppose we fix the significance level at 5%. This means that we will
reject the null (and accept that there is a positive premium) only when the data suggest that
the probability the null is true is 5% or less. To do so, we must find a critical value, denoted
z� (or critical values in the case of two-tailed tests), that corresponds to � � .05, which will
create two regions, an acceptance region and a rejection region. Look at Figure A.8 as an
illustration.

If the sample average is to the right of the critical value (in the rejection region), the null
is rejected; otherwise, it is accepted. In the latter case it is too likely (i.e., the probability is
greater than 5%) that the sample average is positive simply because of sampling error. If
the sample average is greater than the critical value, we will reject the null in favor of the
alternative. The probability that the positive value of the sample average results from sam-
pling error is 5% or less.

If the alternative is one-sided (one-tailed), as in our case, the acceptance region covers
the entire area from minus infinity to a positive value, above which lies 5% of the distri-
bution (see Figure A.8). The critical value is z� in Figure A.8. When the alternative is two-
tailed, the area of 5% lies at both extremes of the distribution and is equally divided
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between them, 2.5% on each side. A two-tailed test is more stringent (it is harder to reject
the null). In a one-tailed test the fact that our theory predicts the direction in which the
average will deviate from the value under the null is weighted in favor of the alternative.
The upshot is that for a significance level of 5%, with a one-tailed test, we use a confidence
interval of � � .05, instead of �/2 � .025 as with a two-tailed test.

Hypothesis testing requires assessment of the probabilities of the test statistics, such as
the sample average and variance. Therefore, it calls for some assumption about the prob-
ability distribution of the underlying variable. Such an assumption becomes an integral part
of the null hypothesis, often an implicit one.

In this case we assume that the stock portfolio excess return is normally distributed. The
distribution of the test statistic is derived from its mathematical definition and the assump-
tion of the underlying distribution for the random variable. In our case the test statistic is
the sample average.

The sample average is obtained by summing all observations (T � 68) and then multi-
plying by 1/T � 1/68. Each observation is a random variable, drawn independently from
the same underlying distribution, with an unknown expectation �, and standard deviation
�. The expectation of the sum of all observations is the sum of the T expectations (all equal
to �) divided by T, therefore equal to the population expectation. The result is 8.57%,
which is equal to the true expectation plus sampling errors. Under the null hypothesis, the
expectation is zero, and the entire 8.57% constitutes sampling error.

To calculate the variance of the sample average, recall that we assumed that all obser-
vations were independent, or uncorrelated. Hence the variance of the sum is the sum of the
variances, that is, T times the population variance. However, we also transform the sum,
multiplying it by 1/T; therefore, we have to divide the variance of the sum T�2 by T 2. We
end up with the variance of the sample average as the population variance divided by T.
The standard deviation of the sample average, which is called the standard error, is

(A.27)

Our test statistic has a standard error of 2.53%. It makes sense that the larger the num-
ber of observations, the smaller the standard error of the estimate of the expectation.

�(average) � ¢ 1
T 2

  ��2≤1/2

� ¢ 1
T 2 T�2≤1/2

�
�

�T
�

.2090

�68
� .0253
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Figure A.8 Under the null hypothesis, the sample average excess return should be distributed
around zero. If the actual average exceeds z� , we conclude that the null hypothesis is false.
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However, note that it is the variance that goes down by the proportion T � 68. The stan-
dard error goes down by a much smaller proportion, � 8.25.

Now that we have the sample mean, 8.57%, its standard deviation, 2.53%, and know
that the distribution under the null is normal, we are ready to perform the test. We want to
determine whether 8.57% is significantly positive. We achieve this by standardizing our
statistic, which means that we subtract from it its expected value under the null hypothesis
and divide by its standard deviation. This standardized statistic can now be compared to
z values from the standard normal tables. We ask whether

We would be finished except for another caveat. The assumption of normality is all right
in that the test statistic is a weighted sum of normals (according to our assumption about
returns). Therefore, it is also normally distributed. However, the analysis also requires that
we know the variance. Here we are using a sample variance that is only an estimate of the
true variance.

The solution to this problem turns out to be quite simple. The normal distribution is
replaced with Student-t (or t, for short) distribution. Like the normal, the t distribution
is symmetric. It depends on degrees of freedom, that is, the number of observations less
one. Thus, here we replace z� with t�, T � 1.

The test is then

When we substitute in sample results, the left-hand side is a standardized statistic and
the right-hand side is a t-value derived from t tables for � � .05 and T � 1 � 68 � 1 � 67.
We ask whether the inequality holds. If it does, we reject the null hypothesis with a 5%
significance level; if it does not, we cannot reject the null hypothesis. (In this example,
t.05, 67 � 1.67.) Proceeding, we find that

In our sample the inequality holds, and we reject the null hypothesis in favor of the alter-
native that the risk premium is positive.

A repeat of the test of this hypothesis for the 1965 to 1987 period may make a skeptic
out of you. For that period the sample average is 3.12%, the sample standard deviation is
15.57%, and there are 23 � 1 � 22 degrees of freedom. Does that give you second
thoughts?

Suppose that we apply the simple regression model (equation A.21) to
the relationship between the long-term government bond portfolio and the
stock market index, using the sample in Table A.3. The estimation result

(% per year) is

a � .9913, b � .0729, R-squared � .0321

We interpret these coefficients as follows. For periods when the excess return on the
market index is zero, we expect the bonds to earn an excess return of 99.13 basis points.
This is the role of the intercept. As for the slope, for each percentage return of the stock
portfolio in any year, the bond portfolio is expected to earn, additionally, 7.29 basis points.
With the average equity risk premium for the sample period of 8.57%, the sample average

The t-Test of
Regression Coefficients

.0857 � 0
.0253

� 3.39 � 1.67

R � E(R)
� � t�, T � 1

R � E(R)
� � z�

�T
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for bonds is .9913 � (.0729 � 8.57) � 1.62%. From the squared correlation coefficient
you know that the variation in stocks explains 3.21% of the variation in bonds.

Can we rely on these statistics? One way to find out is to set up a hypothesis test, pre-
sented here for the regression coefficient b.

H0: b � 0 The regression slope coefficient is zero, meaning that changes in the
independent variable do not explain changes in the dependent variable

H1: b � 0 The dependent variable is sensitive to changes in the independent
variable (with a positive covariance)

Any decent regression software supplies the statistics to test this hypothesis. The re-
gression customarily assumes that the dependent variable and the disturbance are normally
distributed, with an unknown variance that is estimated from the sample. Thus the regres-
sion coefficient b is normally distributed. Because once again the null is that b � 0, all we
need is an estimate of the standard error of this statistic.

The estimated standard error of the regression coefficient is computed from the esti-
mated standard deviation of the disturbance and the standard deviation of the explanatory
variable. For the regression at hand, that estimate is s(b) � .0493. Just as in the previous
exercise, the critical value of the test is

s(b)t �, T � 1

Compare this value to the value of the estimated coefficient b. We will reject the null in
favor of b � 0 if

b � s(b)t �, T � 1

which, because the standard deviation s(b) is positive, is equivalent to the following
condition:

The t-test reports the ratio of the estimated coefficient to its estimated standard deviation.
Armed with this t-ratio, the number of observations, T, and a table of the Student-t distribu-
tion, you can perform the test at the desired significance level.

The t-ratio for our example is .0729/.0493 � 1.4787. The t-table for 68 degrees of free-
dom shows we cannot reject the null at a significance level of 5%, for which the critical
value is 1.67.

A question from a past CFA exam calls for understanding of regression analysis and hy-
pothesis testing.

Question.
An academic suggests to you that the returns on common stocks differ based on a company’s mar-
ket capitalization, its historical earnings growth, the stock’s current yield, and whether or not the
company’s employees are unionized. You are skeptical that there are any attributes other than mar-
ket exposure as measured by beta that explain differences in returns across a sample of securities.

Nonetheless, you decide to test whether or not these other attributes account for the differences
in returns. You select the S&P 500 stocks as your sample, and regress their returns each month for
the past five years against the company’s market capitalization at the beginning of each month,
the company’s growth in earnings throughout the previous 12 months, the prior year’s dividend
divided by the stock price at the beginning of each month, and a dummy variable that has a value
of 1 if employees are unionized and 0 if not.

b
s(b)

� t� ,T � 1
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1. The average R-squared from the regression is .15, and it varies very little from month
to month. Discuss the significance of this result.

2. You note that all of the coefficients of the attributes have t-statistics greater than 2 in
most of the months in which the regressions were run. Discuss the significance of
these attributes in terms of explaining differences in common stock returns.

3. You observe in most of the regressions that the coefficient of the dummy variable is
�.14 and the t-statistic is �4.74. Discuss the implication of the coefficient regarding
the relationship between unionization and the return on a company’s common stock.

Answer.
1. Differences in the attributes’ values together explain about 15% of the differences in

return among the stocks in the S&P 500 index. The remaining unexplained differences
in return may be attributable to omitted attributes, industry affiliations, or stock-specific
factors. This information by itself is not sufficient to form any qualitative conclusions.
The fact that R-squared varied little from month to month implies that the relationship
is stable and the observed results are not sample specific.

2. Given a t-statistic greater than 2 in most of the months, one would regard the attribute
coefficients as statistically significant. If the attribute coefficients were not significantly
different from zero, one would expect t-statistics greater than 2 in fewer than 5% of the
regressions for each attribute coefficient. Because the t-statistics are greater than 2 much
more frequently, one should conclude that they are definitely significant in terms of
explaining differences in stock returns.

3. Because the coefficient for the dummy variable representing unionization has persistently
been negative and since it persistently has been statistically significant, one would
conclude that disregarding all other factors, unionization lowers a company’s common
stock return. That is, everything else being equal, nonunionized companies will have
higher returns than companies whose employees are unionized. Of course, one would
want to test the model further to see if there are omitted variables or other problems
that might account for this apparent relationship.
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